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Abstract 17 

 18 
The properties of the expected analysis and forecast error covariance matrices are explored using 19 

a novel method based on the tangent linearization and adjoint of a 4-dimensional variational (4D-20 

Var) data assimilation system. The method is applied to the mesoscale circulation that develops 21 

in the presence of a baroclinically unstable mid-latitude ocean temperature front using a series of 22 

paternal twin experiments that employ both strong and weak constraint 4D-Var. Adopting the 23 

traditional view of Empirical Orthogonal Functions (EOFs) of a covariance matrix as the semi-24 

major axes of a multi-dimensional hyper-ellipsoid, variations in the volume of the analysis and 25 

forecast error hyper-ellipsoids are explored which provides information about the flow of 26 

probability through state-space. The complementary variations in the expected total variance of 27 

the covariance matrix are also investigated. Two different kinds of behavior are identified that 28 

are associated with either the demise or growth of baroclinic instabilities. In both cases, the 29 

volume of the hyper-ellipsoid decreases during the 4D-Var analysis cycle. During the subsequent 30 

forecasts, the volume of the forecast error hyper-ellipsoid initially continues to collapse under 31 

both scenarios. During this time, the hyper-ellipsoid becomes increasingly elongated along some 32 

of the semi-major axes as forecast errors grow in preferential directions. Growth in these 33 

directions is controlled by the most unstable error modes, and projection of forecast error on to 34 

the precursors of these modes has been shown previously to be characterized by upscale energy 35 

transfer and non-normal processes. For the case of the growing wave, the forecast error hyper-36 

ellipsoid continues to collapse through to the end of the forecast period. However, for the 37 

decaying wave, the hyper-ellipsoid may undergo expansion at longer forecast lead times. 38 

 39 

Keywords: 4D-Var; error covariance; adjoint methods; baroclinic instability  40 
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1. Introduction 41 

 42 
An important element of operational analysis and forecast systems for the ocean and atmosphere 43 

is the quantification of the errors and uncertainties in the resulting circulation estimates. Since 44 

many operational systems these days are based on an ensemble approach, analysis and forecast 45 

ensembles provide a convenient means for estimating error covariance properties. Such 46 

approximations, however, are of reduced rank in nature, and generally, underestimate the actual 47 

errors. For example, some form of covariance inflation is typically required in ensemble Kalman 48 

filters due to the limited number of members that are used (e.g., Anderson, 2007). In addition, 49 

localization is necessary to ameliorate spurious correlations (and rank-deficiency) due to the 50 

limited ensemble size (Gaspari and Cohn, 1999). In variational data assimilation systems, 51 

covariance information is difficult to compute (Ngodock et al., 2020) but can be estimated from 52 

an approximation of the Kalman gain matrix, although it is typically an underestimate of the 53 

actual error covariance (Fisher and Courtier, 1995).  54 

 55 

The very large dimension of most geophysical problems of interest precludes the explicit 56 

computation of analysis and forecast error covariance matrices. However, many important 57 

properties of these covariances can be computed if it is possible to compute the product of the 58 

matrix with a vector. In this paper, we explore an alternative approach for computing the 59 

expected analysis and forecast error covariance, which makes direct use of the tangent linear and 60 

adjoint of a 4-dimensional variational (4D-Var) data assimilation system to compute a matrix-61 

vector product. It should be stated at the outset that the approach used here is extraordinarily 62 

demanding computationally and is not suitable for a large operational analysis-forecast system. 63 

However, as we will demonstrate, our approach is of theoretical and mathematical interest 64 

because it has the desirable property of providing an explicit operator for the analysis and 65 

forecast error covariance, which makes it very appealing. Despite the heavy computational 66 

burden in a conventional 4D-Var system, recent developments in 4D-Var promise very 67 

substantial reductions in the computational cost (Fisher et al., 2011; D’Amore et al., 2014; 68 

Arcucci et al., 2015; Fisher and Gürol, 2017) which could make the approach adopted here more 69 

tractable in large models in the future. 70 

 71 

In light of the computationally heavy burden, attention is restricted to an exploration of the 72 

properties of analysis and forecast error covariance in a small, but very relevant, computational 73 

domain. Specifically, we will consider the expected covariance properties of errors that develop 74 

in the ocean mesoscale circulation environment that results from the adjustment of a 75 

baroclinically unstable temperature front at mid-latitudes. Fronts are a common feature of the 76 

ocean circulation, so the results presented here are of broad interest and generally applicable in 77 

many situations. For example, analysis and prediction of oceanic fronts and their incumbent 78 

eddies in coastal ocean environments is an important mandate of many operational forecasting 79 

centers because of the significant role that these circulation features play in controlling local air-80 

sea interactions, the health of marine ecosystems, and ocean acidification events. Therefore, the 81 

results presented here have some potentially very practical applications. 82 

 83 

A description of the mathematical formulation of the analysis and forecast error covariance in 84 

terms of the tangent linearization of the entire data assimilation system is presented in section 2, 85 

while section 3 describes the experimental set-up used to explore the utility of the method 86 



 4

introduced in section 2. The properties of the expected analysis and forecast errors for a frontal 87 

system are presented in sections 4 and 5. Section 6 demonstrates the connection between the 88 

method used here and the closely related study of Smith et al. (2015). A summary and 89 

conclusions follow in section 7. 90 

 91 

2. Methodology 92 

 93 
The approach developed for estimating the expected analysis and forecast error covariance is 94 

based on the work of Moore et al. (2012) (hereafter MAB) using a 4D-Var approach. For this 95 

reason, the following discussion is focused on 4D-Var, but the same methodology could, in 96 

principle, be applied to any linearized data assimilation algorithm. 97 

 98 

a. The expected analysis error covariance 99 

 100 

A standard notation will be adopted here (Ide et al., 1997), where � represents the state-vector of 101 

the system under consideration, while �� and �� denote the background and analysis estimates 102 

of �  respectively. For any linear data assimilation system, the best, linear, unbiased estimate 103 

(BLUE; aka analysis) can be expressed as: 104 

 105 

      �� = �� + ���	 − ����
�     (1) 106 

  107 

where �	 is the vector of observations, and � is the observation operator that maps �� to the 108 

space-time location of each datum. The matrix � is the Kalman gain, and can be expressed as: 109 

 110 

      � = �������� + �
��     (2) 111 

 112 

where � and � are the background and observation error covariance matrices, respectively, and 113 � is the linearized observation operator. In the case of 4D-Var, data are assimilated over a 114 

window in time and � also includes the nonlinear model, while � represents the tangent linear 115 

model sampled at the observation points. The adjoint model forced at the observation points is 116 

represented by ��. In the case of strong constraint 4D-Var, � = �� and describes the statistics 117 

of the errors in the initial conditions. For the weak constraint case, errors in the model are also 118 

accounted for by augmenting the background error covariance matrix so that � = �������, �
 119 

where � is the model error covariance matrix. A schematic of a typical analysis-forecast cycle 120 

for both flavors of 4D-Var is shown in Fig. 1, where the interval � = �−�, 0� denotes the analysis 121 

window, and � = �0, �� represents the forecast interval. The analysis given by (1) is valid at the 122 

beginning of the analysis window and must be integrated forward in time to � = 0 in order to 123 

make a forecast. Based on (1) and (2), the covariance of the expected errors in the analysis �� 124 

can be written as: 125 

 126 

      �−�
 = �! − ��
��! − ��
� + ����    (3) 127 

 128 

(Daley, 1991). As in (1), this estimate of   is valid at time � = −�. 129 

 130 
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 131 
Figure 1: A schematic showing a typical analysis and forecast cycle that employs 4D-Var data assimilation. The 132 
analysis cycle spans the time interval �−�, 0� while the forecast cycle spans the interval �0, ��. The expected errors in 133 
the analyses at the forecast start time � = 0 are described by the analysis error covariance matrix  �0
, while the 134 
expected errors in the forecast �" are represented by the forecast error covariance matrix #��
. 135 
 136 

The goal of 4D-Var is to identify the analysis ���−�
 that minimizes a cost function that is a 137 

quadratic measure of the weighted departures of � from the background and the observations. 138 

Because the resulting minimization problem is nonlinear, it is common practice to apply the 139 

incremental approach of Courtier et al. (1994), where the estimation procedure is linearized 140 

about the background �� over the interval � = �−�, 0�. The resulting algorithm is equivalent to a 141 

Gauss-Newton method (Lawless et al., 2005) and comprises so-called inner-loops and outer-142 

loops. The minimization of the non-quadratic cost function proceeds via a sequence of linear 143 

minimization problems where the latter is accomplished during the inner-loop iterations and 144 

identifies an increment $��−�
 to ���−�
. Following the completion of a sequence of inner-145 

loops, the state vector estimate ��−�
 is updated using the most recent increment during an 146 

outer-loop, and another linear minimization problem is solved via a new set of inner-loops. After 147 

n outer-loops, the analysis is given by: 148 

 149 

       �� = �� + ∑ $�&'&(� ,     (4) 150 

 151 

and the expected analysis error covariance matrix is given by: 152 

 153 

 '�−�
 = )*�! − �&�&��
�
&(' + � )*�! − �&�&��
�

&(' +�
154 

+ ,- *�! − �&�&��
�. + �'
./�
&('

0��
.(� 1 � ,- *�! − �&�&��
�. + �'

./�
&('

0��
.(� 1

�
�5
 155 

 156 

where �& is the Kalman gain resulting from outer-loop i and �&�� is the tangent linear 157 

observation operator linearized about �&��. During the first outer-loop �3 ≡ ��, which is the 158 

observation operator linearized about ��. 159 
 160 
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b. Analysis error covariances from the tangent linearization of 4D-Var 161 

 162 

Belo-Pereira and Berre (2006) and Berre et al. (2006) have demonstrated that estimates of the 163 

expected analysis error covariance matrix can be computed by perturbing an analysis �� to 164 

create an analysis ensemble. Each member of the analysis ensemble is generated by rerunning 165 

the data assimilation system using a perturbed background and perturbed observations. The 166 

perturbations are drawn from normal distributions with zero mean and error covariances � and 167 �, respectively. As shown by these authors, the covariance of the resulting analysis ensemble 168 

mimics the covariance of the expected uncertainties in the unperturbed analysis ��. In the case of 169 

4D-Var, this would be an estimate of  '�−�
 in Fig. 1, and the original unperturbed analysis �� 170 

represents the ensemble mean. 171 

 172 

By extending these ideas, MAB showed that as the size of the analysis ensemble approaches 173 

infinity, the ensemble covariance can be expressed in terms of a tangent linearization of the data 174 

assimilation system and its adjoint. In the context of the present work, this would be the tangent 175 

linearization of the entire 4D-Var algorithm and the corresponding adjoint. Specifically, any 176 

linear data assimilation system that solves for the BLUE in (1) can be generalized so that: 177 

 178 

       �� = �� + 5�6
     (6) 179 

 180 

where 6 = ��	 − ����
� represents the innovation vector, and 5�6
 denotes the data 181 

assimilation algorithm, which, in general, will be a nonlinear function of 6. For example, 4D-Var 182 

proceeds by minimizing the cost function using a conjugate gradient method, an inherently 183 

nonlinear procedure based on 6. Using (6) and following MAB, equation (5) can be 184 

re-expressed as: 185 

 186 

 '�−�
 = )* 7! − 8586& �&��9�
&(' + � )* 7! − 8586& �&��9�

&(' +�
187 

+ ,- * 7! − 8586& �&��9 8586.
./�
&('

0��
.(�188 

+ 8586'1 � ,- * 7! − 8586& �&��9 8586. + 8586'
./�
&('

0��
.(� 1

�
                                     �7
 189 

 190 

where 6& = <�	 − ���&��
=, the operator 85 86&⁄  represents the tangent linearization of 4D-191 

Var for outer-loop i, and �85 86&⁄ 
�is the corresponding adjoint. In the case of a single outer-192 

loop, equation (7) reduces to: 193 

 194 

  �−�
 = �! − �85 86⁄ 
��
��! − �85 86⁄ 
��
� + �85 86⁄ 
��85 86⁄ 
� (8) 195 

 196 

which was the case considered by MAB for estimating the expected analysis error variance of 197 

several different circulation indices. Since (7) and (8) are based on a 1st-order linearization of 198 5�6
 in (6), it is assumed that the influence of higher-order terms on  '�−�
 is negligible. As 199 
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noted in section 1, the explicit computation of all the elements of   would be prohibitively 200 

expensive given the very large dimension of most problems of interest. However, since the 201 

matrix in (7) and (8) is available as an operator in the form of FORTRAN code, important 202 

properties of the error covariance matrix can be quantified using iterative methods since all that 203 

is required is the ability to compute a matrix-vector product. 204 

 205 

The tangent linear operator �85 86⁄ 
 and its adjoint �85 86⁄ 
� have considerable utility 206 

(Moore et al., 2011a). For example, the operators can be used to quantify the sensitivity of the 207 

4D-Var system to uncertainties in the system, provide information about the impact of 208 

observations on the analyses and forecast (e.g., Trémolet, 2008), yield information about the 209 

expected error variance in scalar functions (MAB), or provide information about the stability and 210 

conditioning of the 4D-Var inversion procedure. The latter arises from the useful properties of 211 

the tangent linearization and adjoint of the conjugate gradient method (Gratton et al., 2014). 212 

 213 

In the investigations described in later sections, it is important to note that �85 86⁄ 
 and 214 �85 86⁄ 
� were derived directly from the data assimilation FORTRAN code using standard 215 

recipes (e.g. Giering and Kaminski, 1998), and each operator represents one complete outer-loop 216 

evaluation of the tangent linear and adjoint of the 4D-Var system. Thus, the computational cost 217 

of each of these operations is comparable to running 4D-Var. However, (7) represents an explicit 218 

operator for the expected analysis error covariance arising from an infinite ensemble, and from 219 

which matrix-vector products can be computed.  Therefore, various properties of the analysis 220 

error covariance matrix, such as the total error variance (i.e., the trace) and Empirical Orthogonal 221 

Functions (EOFs), can be computed iteratively. 222 

 223 

c. Forecast error covariance 224 

Suppose now that the unperturbed analysis �� of section 2b is advanced to the end of the 225 

analysis window � = 0 and used to initialize a forecast denoted �", as shown schematically in 226 

Fig. 1 for the interval �0, ��. Similarly, an ensemble of forecasts can be created, each initialized 227 

from individual members of the analysis ensemble of section 2b. The covariance of the forecast 228 

ensemble about the unperturbed forecast �" will mimic the covariance of the expected forecast 229 

errors. Under this scenario, and neglecting for now model error, a linear approximation of the 230 

expected forecast error covariance matrix #��
 during the forecast interval � = �0, �� (illustrated 231 

in Fig. 1) is given by: 232 

 233 

     #��
 = ?@�0, �
 '�0
?@���, 0
     (9) 234 

 235 

where ?@�0, �
 denotes the tangent linear model linearized about the forecast �"��
, ?@���, 0
 is 236 

the adjoint model where the reversed arguments indicate integration backward in time over the 237 

forecast interval, and  '�0
 is the analysis error covariance matrix at the end of the analysis 238 

window, � = 0 (cf., Fig. 1). In this framework, the unperturbed forecast �" is equivalent to the 239 

ensemble mean, and #��
 is the covariance of the (infinite) ensemble about the ensemble mean. 240 

The analysis error covariance at � = 0 is given by  '�0
 = ?A�−�, 0
 '�−�
?A��0, −�
 where 241  '�−�
 is the expected analysis error covariance at the beginning of the analysis window given 242 

by (5), and ?A�−�, 0
 denotes the tangent linear model linearized about the background �� over 243 

the analysis window. 244 
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 245 

Using (7), the expected forecast error covariance can be computed according to: 246 

 247 

   #'��
 = ?@�0, �
?A�−�, 0
 '�−�
?A��0, −�
?@���, 0
. (10) 248 

 249 

The covariance matrices in (3) and (9) are defined in terms of the L2-norm and, as such, cross-250 

covariances between different physical variables of the state vector will have mixed units (e.g., 251 

ms-1℃). While this is an acceptable definition of covariance, the mixed units can render difficult 252 

a direct comparison of individual matrix elements and complicate the interpretation of the EOFs. 253 

Alternatively, a norm can be chosen whereby the elements of the resulting error covariance 254 

matrix all have the same units. In numerical weather prediction, it is common to use an energy 255 

norm to define the covariance of the forecast error C (e.g., Buizza and Palmer, 1995) such that 256 D = EFGCC�G�H, where EF⋯ H denotes the expectation operator, and G is an appropriate weight 257 

matrix so that all elements of the vector GC have the units of the square root of energy. The 258 

choice of an energy norm is also appealing given the fundamental role that energy plays in our 259 

understanding of the underlying physical processes that govern the ocean circulation, the very 260 

same processes that control the evolution of forecast errors. Therefore, an energy norm, 261 

described in appendix A, was used in all of the computations reported here in which G is time-262 

invariant. As in section 2, the various matrix operations in (10) are available as FORTRAN code, 263 

and various properties of #'��
 can be evaluated using iterative methods. 264 

 265 

3. Experimental Setup 266 

 267 
Attention is confined here to the relatively simple yet dynamically relevant case of the 268 

adjustment of an ocean temperature front in a zonally re-entrant channel and the subsequent 269 

relaxation toward a restratified water column, a problem that has been studied extensively in the 270 

oceanographic literature (e.g., Boccaletti et al., 2007; Klein et al., 2008). 271 

 272 

a. Paternal twin models 273 

 274 
The model used was the Regional Ocean Modeling System (ROMS; Shchepetkin and 275 

McWilliams, 2005). It was configured for a flat-bottomed, zonally periodic channel 1000 km 276 

long, 2000 km wide, and 4000 m deep centered on 43.3°S. Two configurations of the model 277 

were considered: “Model T” with 2.5 km grid-spacing in the horizontal, and “Model F” with 20 278 

km horizontal grid spacing. In both models, 20 unevenly spaced levels were used in the vertical 279 

with spacing ~20 m near the surface, increasing to ~700 m at the bottom. Both models employ 280 

4th-order horizontal and vertical advection for tracers, and 3rd-order upstream horizontal 281 

advection for momentum in conjunction with 4th-order vertical advection of momentum. 282 

Horizontal mixing in the form of 2nd-order eddy diffusivity and eddy viscosity was used that is 283 

parallel to the model J-levels with coefficients of eddy viscosity and diffusivity of 25 m2 s-1 in 284 

Model T and 400 m2 s-1 in Model F. Vertical mixing was parameterized using the K − L generic 285 

length scale formulation of Umlauf and Burchard (2003) with lower thresholds of 10�N m2 s-1 for 286 

the vertical mixing coefficients of tracer and momentum in Model T and 5 × 10�N m2 s-1 in 287 

Model F. The time step in Model T was 150 s compared to 1200 s in Model F. 288 

 289 
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Model T was used to simulate the true ocean circulation, and following Smith et al. (2015; 290 

hereafter SMA) was initialized from rest with a meridional temperature front described by 291 P�Q, R
 = <P3 − PS�Q
=<1 − �R �⁄ 
� T⁄ = where PS�Q
 = UV�Q
erf��Q − Q3
 Z⁄ 
 V3⁄ , with U =292 4.52,  Q is the cross-channel distance, R is depth, V�Q
 is the Coriolis parameter on a β-plane 293 

with a value of V3 at the central latitude 43.3°S, Z = 80 km is the meridional scale of the 294 

temperature front, � is the channel depth, Q3 is the value of Q at the mid-point of the 295 

channel, and P3 = 12°C is the surface temperature at Q3. Salinity was not included in the model 296 

calculations reported here. Instability growth was encouraged by adding small amplitude, 297 

sinusoidal, zonal wavenumber-1 and zonal wavenumber-2 perturbations to the initial condition. 298 

For simplicity, there is no surface forcing imposed in either Model T or Model F. However, the 299 

instability process was prolonged by weakly relaxing the solution to the initial temperature 300 

profile on a time scale of 50 days. Figures 2a-d shows the evolution of the SST of the circulation 301 

that develops in Model T between days 50 and 134.  302 

 303 

As noted in section 1, fronts are a common feature of the ocean circulation and occur on a wide 304 

range of scales ranging from the geostrophic regime down to the sub-mesoscale. Here, we 305 

concentrate on the quasi-geostrophic regime, which includes the formation of seasonal fronts 306 

such as sub-polar and shelf-break fronts, and upwelling fronts such as those that form in eastern 307 

boundary current systems. In the experiments presented here, the presence of the front is taken as 308 

a given, and we do not concern ourselves with the mechanism of frontogenesis, although surface 309 

forcing is known to play a major role in many instances. For example, cross-front Ekman 310 

transport associated with along front winds can hasten the formation or demise of a front 311 

depending on the wind direction. Here we simply explore the collapse of a front after genesis, 312 

and the subsequent relaxation toward a restratified ocean. With this in mind, Figs. 2a-d illustrate 313 

very clearly the complex circulation that develops as a result of the baroclinic instabilities that 314 

ensue as the isotherms slump in an attempt to move toward a lower energy state. Initially, the 315 

circulation is dominated by the development of a zonal wavenumber-2 instability, which later 316 

gives way to a zonal wavenumber-1 feature. 317 

 318 



 10

 319 
Figure 2: The SST (°C) from the circulation captured by Model T (a-d) and Model F without data assimilation (e-h) 320 
on selected days. The day number correspond to each column is indicated in the upper row. The Model F strong 321 
constraint 4D-Var analyses for the same days are shown in (i-l). (m) Time series of the kinetic energy (m2s-2) of the 322 
vertically integrated velocity are also shown from Model T (blue line), Model F without data assimilation (red line), 323 
Model F strong constraint 4D-Var analyses (black solid line) and Model F weak constraint 4D-Var analyses (orange 324 
line). Also shown are kinetic energy time series for 30-day forecasts initialized from the strong constraint 4D-Var 325 
analysis on days 70, 96, and 110 (black dashed lines). 326 
 327 
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Model F was used as a surrogate for Model T. Figures 2e-h show the SST from the integration of 328 

Model F initialized with the Model T state-vector on day 50 that was first subsampled on the 329 

Model F grid. Comparison with Figs. 2a-d indicates that the Model F solution diverges from the 330 

parent Model T circulation over time. As anticipated, the Model F solution is less energetic than 331 

Model T, as illustrated in Fig. 2m, which shows the time series of the domain-integrated kinetic 332 

energy (KE) computed from the vertically integrated velocity. During the period shown, the 333 

Model T KE continues on an upward trajectory indicating that the circulation has not yet reached 334 

an equilibrium. The available potential energy (APE) is still being converted to KE as the 335 

instabilities develop. Conversely, the Model F KE asymptotes quickly and then undergoes a slow 336 

decline over time, indicating that, in this case, the conversion of APE to KE is offset by 337 

dissipation (recall that there is no surface forcing and the relaxation term is weak).  338 

 339 

b. Strong and weak constraint 4D-Var 340 

 341 

The Model T circulation between days 50 and 110 (cf., Figs. 2a-d) was used as a surrogate for 342 

the true ocean circulation. This 60-day time interval was divided into 2-day windows, and 343 

simulated observations (drawn from Model T) during each window were assimilated into Model 344 

F using 4D-Var during the resulting 30 analysis cycles. The 4D-Var analysis at the end of each 345 

time window was used as the background estimate �� at the start of the next cycle. The 346 

background circulation for the first cycle was chosen to be the Model T circulation on day 49, 347 

subsampled on the Model F grid. 348 

 349 

The observations were all in the form of vertical profiles of temperature over the upper 1000 m 350 

of the water column only, regularly spaced in the horizontal and in time. Observations were 351 

available at times corresponding the beginning, middle and end of each 2-day analysis cycle, and 352 

sampled every 60 km (corresponding to every third Model F horizontal grid point), yielding 353 

~26,000 observations per 2-day assimilation window.  Random observation errors with zero 354 

mean and a standard deviation of 0.1ºC were added to each datum. The observation errors were 355 

assumed to be mutually uncorrelated, a reasonable assumption for independent vertical profiles, 356 

so the observation error covariance matrix � is diagonal. The diagonal elements of � correspond 357 

to an error standard deviation of 0.22ºC, a combination of the measurement error and an assumed 358 

error of representativeness with a standard deviation of 0.2ºC. 359 

 360 

The background error covariance matrix � was estimated using the identical twin experiments 361 

described by SMA who used a similar model configuration with 10 km horizontal grid spacing. 362 

Specifically, the standard deviations and typical correlation length scales of the background 363 

errors were computed from the SMA circulation estimates and then used in the ROMS 4D-Var 364 

model for �, which is based on the diffusion operator approach of Weaver and Courtier (2001). 365 

In addition, the balance operator of Weaver et al. (2005) was also employed. Both strong and 366 

weak constraint 4D-Var experiments were performed. In the strong constraint case, Model F is 367 

assumed to be free of errors, and the 4D-Var control vector comprises only the model initial 368 

conditions. However, imperfections in Model F arise from poor horizontal resolution and 369 

“errors” associated with imperfect parameterizations. Therefore, in the case of weak constraint 370 

4D-Var, the control vector is augmented with a correction for model error _��
 that is applied at 371 

every grid point and every time step in Model F. Similarly, the background error covariance 372 

matrix � in (2) is replaced by ` = diag��, �
 where � is the model error covariance matrix. 373 
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The matrix � describes the covariance of typical model errors that develop during each 2-day 374 

assimilation cycle. To estimate a time-invariant �, Model F was initialized at the start of each 2-375 

day window with the Model T solution on the same day sub-sampled on the Model F grid. The 376 

difference between the Model F solution two days later and the corresponding Model T solution 377 

was then used to estimate the standard deviation of the model error and typical correlation length 378 

scales, the latter employing the semi-variogram approach of Banerjee et al. (2004). In this way, 379 � represents the statistics of typical model errors that develop during the 2-day assimilation 380 

windows. During weak constraint 4D-Var experiments, � was modeled using a diffusion 381 

operator as for �. In practice, the control vector corrections _��
 for model error were only 382 

computed every 2 hours during the weak constraint experiments and linearly interpolated to 383 

times in between, so a decorrelation time of 1 day was also assumed for model error to regularize 384 

the time evolution of model error corrections. This time scale is consistent with the slow time 385 

evolution of the Model F minus Model T differences used to estimate �. 386 

 387 

In all experiments, homogeneous, isotropic correlation functions were employed to model � and 388 �. Specifically, for �  (�) the following correlation lengths were used: 150 (200) km for the free 389 

surface height, 75 (200) km for both horizontal velocity components and 65 (200) km for 390 

temperature. A vertical correlation length of 200 m was used for both � and �. 391 

 392 

In all experiments, the simulated observations were assimilated into Model F using the dual 393 

formulation of strong and weak constraint 4D-Var described in detail by Moore et al. (2011b) 394 

and Gürol et al. (2014). Figures 2i-l show the Model F SST from the strong constraint 4D-Var 395 

analyses on selected days. A comparison with the true solution (Figs. 2a-d) confirms that data 396 

assimilation can recover the majority of the Model T circulation features that are resolved by the 397 

Model F grid. The weak constraint circulation analyses are very similar to those in Figs. 2i-l (not 398 

shown). Data assimilation also energizes the circulation as shown in Fig. 2m, which shows a 399 

time series of KE from both the strong and weak constraint analyses. During each 4D-Var cycle, 400 

APE is added by the observations, thereby propping up the isotherms and leading to elevated KE 401 

through baroclinic conversion processes. The discrete jumps in KE between 4D-Var cycles are 402 

very evident in Fig. 2m. Furthermore, Fig. 2m also shows that the weak constraint forcing term 403 _��
 often further energizes the analyses. 404 

 405 

4. Properties of the Error Covariance Matrix 406 

 407 
As discussed in section 2, the properties of the analysis and forecast error covariance matrices 408 

associated with the Model F experiment are of interest. These provide quantitative information 409 

about the veracity of the 4D-Var analyses and ensuing forecasts. In this section, we will first 410 

explore some general properties of the expected error covariance matrices arising from the 411 

infinite ensemble of perturbed 4D-Var analyses described in sections 2b and 2c. The perturbed 412 

4D-Var analyses are described in appendix B. 413 

 414 

a. The determinant 415 

 416 

The determinant of a covariance matrix can be expressed as the product of its eigenvalues. 417 

Furthermore, the associated eigenvectors define the direction of the semi-major axes of a multi-418 

dimensional hyper-ellipsoid, while the square root of each eigenvalue represents the axes 419 



 13

lengths. Therefore, the determinant of the covariance matrix is of interest because it is 420 

proportional to the squared-volume of the hyper-ellipsoid. Specifically, the determinant of a 421 

covariance matrix is proportional to the squared hyper-volume of all ocean states for which the 422 

error is smaller than one standard deviation. Therefore, in the case of the analysis error 423 

covariance, a smaller determinant indicates a more precise estimate of the ocean state from the 424 

data assimilation system. As shown in section 4c, the temporal evolution of the determinant of a 425 

covariance matrix also provides information about the flow of probability through the system. As 426 

noted in appendix C, for the large dimension problem considered here (~105), it is not practical 427 

to explicitly compute the analysis and forecast error covariance matrices. Therefore, as described 428 

in appendix C, the determinants of the energy-weighted analysis error covariance matrix G 'G�  429 

and forecast error covariance matrix G#'��
G� were estimated using the Monte Carlo method of 430 

Bai et al. (1996), an approach that invokes the Lanczos algorithm (Golub and van Loan, 1989) to 431 

estimate the eigenvectors of each matrix iteratively. Also, the Bai et al. method places upper and 432 

lower bounds on the determinant estimates. 433 

 434 

Using the “paternal twin” approach described in section 3, the simulated observations from 435 

Model T were assimilated into Model F using a single outer-loop and 25 inner-loops, a choice 436 

based on the experience of SMA. Since a single outer-loop is considered, the subscript n will be 437 

dropped in the sequel. If no data are assimilated, � = e and (3) reduces to  �−�
 = �. The 438 

volume of the hyper-ellipsoid �f��G�G�
� T⁄  is, therefore, a useful benchmark. As noted in 439 

section 3b, the balance operator of Weaver et al. (2005) was also employed in the 440 

parameterization of �. However, since the balance operator is only weakly flow-dependent, � 441 

varies very little from one data assimilation cycle to the next. This is illustrated in Fig. 3a, which 442 

shows an estimate of ln<�f��G�G�
� T⁄ = (i.e., a measure of the natural log of the hyper-ellipsoid 443 

volume) based on the energy norm (black circles). Because of the large dimension of the system 444 

considered here (~105), the approach is computationally very demanding, so estimates of the 445 

determinant were only computed every 4th analysis cycle. 446 

 447 

The volume of the hyper-ellipsoid defined by the expected analysis error covariance matrix at the 448 

beginning of each analysis cycle (i.e., � = −� in Fig. 1) is given up to a constant of 449 

proportionality by �f��G �−�
G�
� T⁄ . A time series of ln<�f��G �−�
G�
� T⁄ = is shown in 450 

Fig. 3a (dark blue circles) for every 4th strong constraint 4D-Var cycle and indicates that the 451 

analysis error covariance hyper-ellipsoid volume at time � = −� is indistinguishable from that 452 

associated with �. 453 
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 454 
Figure 3: (a) Times series of log�3<ln<�f��G�G�
� T⁄ == (black circles and black line), 455  log�3<ln<�f��G �−�
G�
� T⁄ ==  (blue circles and blue line), log�3<ln<�f��G �0
G�
� T⁄ ==  (red circles and red 456 
line) and log�3<ln<�f��G#��
G�
� T⁄ ==  for various forecast lead times: � = 2 days (green circles and green line), 457 � = 6 days (magenta circles and magenta line), � = 12 days (cyan circles and cyan line), � = 18 days (red triangles 458 
and red dashed line), � = 22 days (blue triangles and blue dashed line), � = 26 days (green triangles and green 459 
dashed line), and � = 30 days (orange circles and orange line). Values were computed for every 4th analysis cycle 460 
(i.e., every 8 days). The upper and lower bounds associated with each estimate are indicated by the vertical error 461 
bars, although in most cases, these are too small to be visible. (b) Times series of log�3<�l�G�G�
=, 462 log�3<�l�G �−�
G�
=, log�3<�l�G �0
G�
=, and log�3<�l�G#��
G�
= for the same lead-times shown in (a). The 463 
color-coding is the same as in (a) and indicated in the legend. (c) Time series of trace estimates based on a 464 
randomization method for a subset of the forecast lead times shown in (b) and computed for every analysis cycle 465 
(i.e., every 2 days). The shaded regions indicate the corresponding uncertainty of ±13% based on the sample size of 466 
random vectors used. The crosses (×) show the corresponding randomized trace estimates of the expected G#G� for 467 
forecasts initialized from weak constraint 4D-Var analyses. The color-coding is the same as in (a) and (b) and 468 
indicated in the legend. 469 
 470 

Figure 3a (red circles) also shows a time series of the hyper-ellipsoid volume defined by the 471 

expected analysis error variance at the end of the same strong constraint 4D-Var cycles (i.e., � =472 0) which is given by �f��G �0
G�
� T⁄ = �f��G?A�0, −�
 �−�
?A��−�, 0
G�
� T⁄ . The 473 

volume of the error hyper-ellipsoid subspace can be seen to decrease in time during the analysis 474 

window. 475 

 476 

Following the usual operational practice, the strong constraint 4D-Var analyses at the end of 477 

each analysis cycle (� = 0 in Fig. 1) were used as the initial conditions for each forecast cycle. 478 

Figure 3a also shows time series of the hyper-ellipsoid volume defined by the expected forecast 479 

error covariance G#��
G� for forecast lead times � of 2 (green circles), 6 (magenta circles), 12 480 
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(cyan circles), 18 (red triangles), 22 (blue triangles), 26 (green triangles) and 30-days (orange 481 

circles) duration. Figure 3a indicates that the forecast error covariance hyper-ellipsoid volume 482 

generally collapses as the forecast lead time increases. The exception is early on in the analysis-483 

forecast experiment during cycles 2 and 6, where there is an indication that the 30-day forecast 484 

error hyper-ellipsoid expands again, although for this case Fig. 3a indicates that the uncertainties 485 

are larger. The properties of the circulation through time associated with this behavior will be 486 

explored later. Another remarkable feature of Fig. 3a is that for a given lead time, the hyper-487 

ellipsoid volume varies very little from cycle-to-cycle, excepting the 30-day forecasts. The 488 

generally observed collapse of the hyper-ellipsoid volume is consistent with a slow decline in the 489 

forecast circulation energy, as illustrated in Fig. 2m, which shows time series of KE for three 490 

representative cases. In each example, the KE slowly decreases over time and is at all times 491 

lower than that of the 4D-Var analysis on the same day. 492 

 493 

b. The trace 494 

 495 

The trace of the leading diagonal of the energy-weighted analysis error covariance matrix G G� 496 

and forecast error matrix G#��
G� represents the expected total error variance in each case. The 497 

trace of a matrix can additionally be expressed as the sum of the eigenvalues. The trace of each 498 

covariance matrix was also estimated iteratively using the method of Bai et al. (1996), and time 499 

series are shown in Fig. 3b for every 4th analysis-forecast cycle. The trace estimates generally 500 

converge faster than the estimates of the determinant, which is reflected in the smaller error bars 501 

in Fig. 3b. 502 

 503 

Figure 3b suggests two different types of behavior for the total variance. During the first 10-15 504 

cycles, the total error variance decreases steadily from the background value, through the 505 

analysis cycle, and out to around forecast day 6-12, after which error variance increases again 506 

with increasing forecast lead time. Thus, during these cycles, while the volume of the hyper-507 

ellipsoid is collapsing (cf., Fig. 3a), it is becoming very elongated in the direction of some semi-508 

major axes. Conversely, after cycle 15, Fig. 3b shows that the total error variance generally 509 

decreases out to around forecast day 22, and significant elongation of the hyper-ellipsoid is 510 

delayed. The mechanics of this behavior are explored further in section 5. 511 

 512 

While it is computationally prohibitive to compute trace estimates for every analysis-forecast 513 

cycle using the method of Bai et al. (1996), a less demanding approach can be used based on a 514 

randomized trace estimate method described by Fisher and Courtier (1995). In this case, an 515 

estimate of the trace of the positive-definite matrix D can be computed according to �l�D
 ≈516 �1 n⁄ 
 ∑ o�Dop&(� , where o is a random vector drawn from the normal distribution q�0,1
, and 517 n is the sample size.  While this procedure is computationally less demanding than the method 518 

of Bai et al. (1996), the resulting trace estimates are less accurate. Nonetheless, they provide 519 

useful information about the behavior of the total error variance during all cycles. The 520 

percentage expected error in the trace estimate, in this case, is given by 100 �2n
� T⁄⁄ . In the 521 

following examples, n = 30 which yields trace estimates with an expected error ~13%, which is 522 

deemed adequate for exploring the general behavior of the total error variance since the trace 523 

estimates for different lead times are distinguishable. The relative performance of the two trace 524 

estimation methods employed in this study is further documented in appendix C.  525 

 526 
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Time series of the trace estimates using the alternative randomized trace estimate approach are 527 

shown in Fig. 3c for every 2-day strong constraint analysis-forecast cycle, and confirm the same 528 

general behavior noted above. Figure 3c also shows the total expected forecast error variance for 529 

forecasts initialized by analyses computed using weak constraint 4D-Var. In general, the forecast 530 

error variance displays behavior that is similar to forecasts initialized from the strong constraint 531 

analyses. However, there are some cycles where the response is quite different (e.g., the 30-day 532 

forecasts for cycles 10-15). As noted earlier, Fig. 2m indicates that the weak constraint 533 

circulation estimates are frequently more energetic than their strong constraint counterparts. It is, 534 

therefore, reasonable to assume that during such times the model error forcing _��
 provides 535 

additional APE during the analysis cycle that, in turn, yields a more unstable forecast state and 536 

larger forecast error variance. 537 

 538 

c. The flow of probability 539 

 540 

The time evolution of the determinant of a covariance matrix provides quantitative information 541 

about the flow of probability through the analysis-forecast system. Following the notation 542 

introduced in section 2a, the time evolution of the forecast state-vector �" can be represented as 543 ��" ��⁄ = ℳ��"
 where ℳ represents the non-linear ROMS model. If, as before, C��
 denotes 544 

the error in the forecast, then to 1st-order: 545 

 546 

      �C ��⁄ = s@��
C��
 + t��
     (11) 547 

 548 

where s@ = �8ℳ 8�⁄ 
|�v is the Jacobian of ℳ describing the tangent linearization of ℳ about 549 �", and t��
 represents model error. Ideally, s@ would represent a linearization of ℳ about the 550 

true state, which, of course, is never known. However, as discussed in section 2b, the evolution 551 

of perturbations around the reference forecast �"are used as a surrogate for describing forecast 552 

errors, in which case �" represents the ensemble mean (or more formally the expected value of 553 �), and s@ describes the time evolution of each member of the infinite ensemble of perturbations 554 C��
. 555 

 556 

It is well known (Gardiner, 1985) that the probability density function (pdf) of the forecast errors 557 C = �L&
 in (11) is described by the Fokker-Planck equation: 558 

 559 

  8w 8�⁄ = − ∑ 8��&w
 8L& + �T ∑ ∑ 8T<x&,.w= 8L&8L.yz.(�z&(�yz&(�    (12) 560 

 561 

where w ≡ w�C��
|C�0

 is the conditional probability of the error C��
 given the initial 562 

condition C�0
, �&  are the elements of the vector-field {��
 generated by s@  (i.e., {��
 ≡563 �C ��⁄ = s@ ��
C��
), and x&,. are the elements of the model error covariance matrix � =564 EFtt�H. By analogy with the advection-diffusion equation, {��
 plays the role of a velocity that 565 

advects the mean of the pdf through state-space and is commonly referred to as the drift vector or 566 

drift velocity. Since, in general, the divergence of the drift velocity does not vanish, {��
 will 567 

also influence the “width” of the pdf. The second term on the right-hand side of (12) is 568 

associated with the stochastic forcing t��
 in (11) and is referred to as diffusion since � = <x&,.= 569 

acts like a diffusion matrix that “broadens” the pdf. Following Gardiner (1985), (12) can be 570 



 17

recast as 8w 8� = − ∑ 8|& 8L&⁄z&(�⁄ where the vector |& = {��
w − }~ ∑ 8<x&,.w= 8L.yz.(�  is a 571 

probability current and ∑ 8|& 8L&⁄z&(�  is the total divergence.  572 

 573 

The presence of stochastic model error t��
 is only considered during the analysis cycle in the 574 

case of weak constraint 4D-Var. Since no allowance is made here for model error during a 575 

forecast, it does not factor into the covariance calculations based on (7). Thus, we will drop the 576 

diffusion term from further analysis. In this case, � = e and the time evolution of the forecast 577 

error covariance matrix G#��
G� = EFGC��
C���
G�H is given by: 578 

 579 

   ��G#G�
 ��⁄ = <Gs@G��=�G#G�
 + �G#G�
<Gs@G��=�
.  (13) 580 

 581 

Using Jacobi’s formula �<�f��G#G�
= ��⁄ = �l�����G#G�
 ��G#G�
 ��⁄ �, the cyclic 582 

properties of the trace, and the associative property of determinants it can be shown that: 583 

 584 

     �<ln<�f��#
� T⁄ == ��⁄ = �l �s@��
�    (14) 585 

 586 

which relates the time rate of change of the volume of the hyper-ellipsoid defined by the forecast 587 

error covariance to the trace of the tangent linear model. Note that the result expressed by (14) is 588 

independent of the choice of G by virtue of the similarity invariance of Gs@G��. 589 

 590 

 591 
 592 
Figure 4: Times series of �l<s@= (blue lines) based on �<ln<�f��#
� T⁄ == ��⁄  using (14) for (a) cycle 2 and (b) 593 

cycle 26. Time series of ln 7�f� �?"�0, �
�9 are also shown (red lines) for the same cycles. Also shown are time 594 

series of � �ln ��f�<#�30, �′
=�� ��⁄  versus lag time �′ for both cycles (black dashed lines) for the lagged forecast 595 

error covariance matrix #��, �′
. The scale for � �ln ��f�<#�30, �′
=�� ��⁄  is on the right-hand side, and the abscissa 596 

is now interpreted as �′. 597 
 598 
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Choosing x&,. = 0 in (12) leads to Liouville’s equation, where the rate of change of the pdf 599 

depends only on the drift velocity {��
 = s@ ��
C��
. The total divergence of the drift velocity 600 

is given by ∑ 8�& 8L&⁄z&(� = �l<s@= , which according to (14), controls the rate of change of 601 

volume of the hyper-ellipsoid associated with the forecast error covariance matrix. To illustrate 602 

this result, Figs. 4a and 4b show time series of �l<s@= based on (14) for cycles 2 and 26 near the 603 

beginning and end of the experiment period, respectively. The time rate of change of ln<�f��#
= 604 

was estimated by fitting a 6th-order polynomial to the data in Fig. 3a1. As shown in Fig. 3a, the 605 

hyper-ellipsoid volume collapses over time through to a forecast lead time ~25-days.  Thus, in 606 

both cases, �l<s@= < 0 through forecast lead time of ~25-days indicating that the drift velocity 607 {��
 associated with the probability current is convergent, although the rate of convergence 608 

decreases with increasing lead time. This suggests that probability becomes more concentrated in 609 

state-space as the forecast lead time increases, consistent with a collapse of the pdf. In other 610 

words, the volume of the sub-space occupied by all possible forecast errors C��
 is also 611 

decreasing. This will be further quantified shortly. While the drift velocity remains convergent 612 

beyond day 25 during cycle 26, Fig. 4a shows that it eventually becomes divergent in the case of 613 

cycle 2 (consistent with Fig. 3a), indicating that the probability density begins to decrease as the 614 

forecast error hyper-ellipsoid subsequently expands. 615 

 616 

d. State-space volume 617 

 618 

In the absence of stochastic model error (i.e., t��
 = 0), solutions of (11) can be written in a 619 

compact form as C��
 = ?@�0, �
C�0
 where ?@�0, �
 is the tangent linear propagator matrix 620 

introduced in section 2a. Similarly, the forecast error covariance matrix can be expressed as 621 G#��
G� = G?@#�0
?@�G�. Based on the associative property of determinants, it is easy to 622 

show that: 623 

 624 

   ln 7�f� �?@�0, �
�9 = �T ln��f�<#��
= �f�<#�0
=y � .   (15) 625 

 626 

Geometrically, any matrix can be viewed as transforming a unit volume multi-dimensional 627 

hyper-cube into a multi-dimensional parallelepiped which, in turn, is defined by the rows of the 628 

matrix. The determinant of a matrix is then the volume of the resulting parallelepiped. Thus, 629 �f� �?@�0, �
� in (15) represents the volume of state-space occupied by the forecast errors C��
. 630 

It also follows from (14) and (15) that �f� �?@�0, �
� = exp �� �l �s@��
� ���3 �, which is 631 

another form of the Liouville equation (Arnold, 1998). Figures 4a and 4b show the time series of 632 ln 7�f� �?@�0, �
�9 for cycles 2 and 26, respectively. In both cases, the volume of state-space 633 

occupied by the forecast errors decreases with increasing lead time, although, for cycle 2, there 634 

are signs of an increasing tendency around day 28 consistent with the transition in the drift 635 

velocity from convergent to divergent conditions. Therefore, the sub-space where the forecast 636 

                                                 
1 From the associative properties of the determinant, �<ln<�f��G#G�
� T⁄ == ��⁄ = }~ �<ln<�f��G
T�f��#
== ��⁄ =}~ �<2 ln<�f��G
= + ln<�f��#
== ��⁄ =�<ln<�f��#
� T⁄ == ��⁄  for the case here where G is a time-invariant diagonal 

matrix. 
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errors reside becomes more certain, in line with the concentration of probability and the collapse 637 

of the forecast error covariance hyper-ellipsoid. 638 

 639 

5. Empirical Orthogonal Functions 640 

 641 
In this section, the topology of the space described by the expected analysis and forecast error 642 

covariance matrices is explored. 643 

 644 
a. Geometric interpretation 645 

 646 

The directions in state-space of the semi-major axes of the hyper-ellipsoids discussed in section 4 647 

are represented by the eigenvectors of the error covariance matrices G G� and G#��
G� . These 648 

same eigenvectors are more commonly referred to as Empirical Orthogonal Functions (EOFs), 649 

and the associated eigenvalues represent the error variance explained by each EOF. In the 650 

present case, the dimension N of the hyper-ellipsoid is O(105), which would also be the total 651 

number of EOFs. The EOF spectrum for either G G� or G#��
G�can be calculated iteratively 652 

using the Lanczos algorithm (Golub and van Loan, 1989). While the Lanczos algorithm can 653 

provide an estimate of the entire EOF spectrum, the leading members of the spectrum typically 654 

emerge to acceptable precision first when the number of iterations is much less than N. 655 

Therefore, this is a convenient way to reliably calculate the leading EOFs. 656 

 657 

 658 
Figure 5: (a) Log10 of the leading 20 eigenvalues � of G �−�
G�, G �e
G�, and G#��
G�for various forecast lead 659 
times, �, for cycle 25. (b) Time series of log�3���
 of G �−�
G�, G �e
G�, and G#��
G� for various forecast lead 660 
time, �, for each cycle. The solid lines are cases for forecasts initialized from strong constraint (S) 4D-Var analyses, 661 
while the circles (•) are for forecasts initialized from weak constraint (W) analyses. (c) The fraction of total variance 662 
explained by the leading 30 EOFs of G �−�
G�, G �0
G�, and G#��
G� for various forecast lead times, �, for 663 
each cycle. The shading indicates the expected uncertainty of ±13% based on randomized trace estimates of the total 664 
variance. The error covariances are based on strong constraint 4D-Var. 665 
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Figure 5a shows the eigenvalues associated with the leading 20 EOFs of the expected analysis 666 

error covariance matrix at the beginning (dark blue line) and end (red line) of a representative 667 

strong constraint analysis cycle. In both cases, the leading portion of the EOF spectrum is quite 668 

flat. Also shown in Fig. 5a are the eigenvalues of the leading EOFs of the expected forecast error 669 

covariance for 2, 6, 12, and 30 day forecast lead times. As the forecast lead time increases, Fig. 670 

5a reveals that the EOF spectrum becomes increasingly peaked, with the leading EOF accounting 671 

for a larger fraction of the total variance. 672 

 673 

Figure 5b shows the eigenvalue �� associated with the leading EOF of G �−�
G�, 674 G �0
G� , and G#��
G�for � =2-30 days for each cycle. For most cycles, it is apparent that the 675 

amplitude of the leading eigenvalue decreases through the analysis cycle from � = −� to � = 0 676 

and through the forecast cycle to � =2 days. For � > 2 days, the leading eigenvalue increases 677 

with lead time. Also shown in Fig. 5b are the leading eigenvalues of G#��
G� for 2- and 12-day 678 

forecasts initialized with weak constraint 4D-Var analyses. The behavior is similar to that of the 679 

strong constraint cases, although again, some cycles (18, 19, and 23) are remarkably different. 680 

As noted in section 4b, the weak constraint 4D-Var corrections for model error _��
 applied 681 

during the analysis cycle tend to energize further the forecast initial conditions (cf., Fig. 2m), 682 

which in turn can influence the EOF spectrum. 683 

 684 

The cumulative variance explained by the leading 30 EOFs of the expected analysis and forecast 685 

error covariance is shown in Fig. 5c for each strong constraint 4D-Var analysis-forecast cycle. In 686 

each case, the randomized trace estimates of the total expected error variance from section 4b 687 

were used, and error bounds are also indicated in Fig. 5c based on the expected 13% error in the 688 

trace estimates. Figure 5c shows that the fraction of variance explained by the leading EOFs is 689 

typically low during the analysis cycle and for short forecast lead times. This is consistent with 690 

the relatively flat nature of the spectrum (Fig. 5a). However, the fraction of the total variance 691 

explained typically increases with increasing forecast lead time, and for � =30 days is close to 692 

100%. Figure 5c shows that while during some cycles, the cumulative variance explained for the 693 � =30 days case appears to exceed 100%, the error bars in Fig. 5c indicate this can be attributed 694 

to the uncertainty in the total variance estimates. Additional calculations for selected cycles 695 

suggest that the fraction of explained error variance increases very slowly beyond the leading 30 696 

or so EOFs (not shown). 697 

 698 

The results presented here indicate that even though the hyper-ellipsoid volume is collapsing as 699 

the forecast lead time increases (cf., Fig. 3a), it is not collapsing uniformly in all directions. In 700 

fact, it is becoming more elongated along the directions described by the leading few EOFs (cf., 701 

Fig. 5b). Furthermore, as the forecast lead time increases, most of the forecast error is described 702 

by a small number of growing directions (cf., Fig. 5c). This agrees with experience in numerical 703 

weather prediction (e.g., Phillips, 1986; Houtekamer, 1993). 704 

 705 

b. Error structures 706 

 707 

The sea surface temperature structure of the leading EOF at each stage of the analysis and 708 

forecast cycle for various lead times is shown in Fig. 6 for cycle 6 (using strong constraint 4D-709 

Var). The SST analysis for this cycle is also indicated for reference in Fig. 6a. Figure 6b shows 710 

that the leading EOF at the beginning of the analysis window (� = −� in Fig. 1) comprises 711 
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coherent mesoscale structures. However, this EOF accounts for only ~0.5% of the total expected 712 

analysis error variance in the subspace constrained by 4D-Var on this day. By the end of the 713 

analysis cycle (� = 0 in Fig. 1), the influence of the time evolution of the circulation on the 714 

leading covariance structure is evident in Fig. 6c. At this time, the EOF comprises generally 715 

smaller scale structures that wrap around the meanders and eddies of the circulation, although the 716 

explained variance is still only ~0.5%. As the forecast lead time increases, Fig. 6 shows that the 717 

horizontal scale of the leading EOFs decreases even further, targeting specific areas of the 718 

evolving meanders in the circulation that are evident in the analysis of Fig. 6a. Furthermore, the 719 

fraction of the variance explained by the leading EOF increases with forecast lead time, and in 720 

the case of a 30-day forecast (Fig. 6g) it is 42% for this particular cycle. 721 

 722 

 723 
Figure 6: (a) SST analysis for cycle 6 (Celcius). The SST structure of the leading EOF for (b) G �−�
G�, (c) 724 G �0
G�, (d) G#G� for � =2 days, (e) G#G� for � =6 days, (f) G#G�for � =12 days, and (g ) G#G�for � =30 725 
days. The percentage variance explained by the leading EOF is also indicated. The 9ºC isotherm on the appropriate 726 
analysis or forecast day is also shown (black line) as an indicator of the temperature front position. The error 727 
covariances are based on strong constraint 4D-Var. In (b)-(g) red indicates positive values and blue indicates 728 
negative values. 729 
 730 

The leading EOFs of G#G� can also account for much of the actual measured forecast error 731 

variance and structure. For example, Figs. 7a-d shows the spatial distribution of the rms forecast 732 

errors for 12-day forecasts initialized from the strong constraint 4D-Var analyses from cycles 21-733 

30. The forecast errors are computed relative to the 4D-Var analysis valid on the forecast day. 734 

Also shown in Figs. 7e-h is the forecast error explained by the leading 30 EOFs of the expected 735 

forecast error covariance matrix G#G�. While the amplitude of the error is underestimated, it is 736 



 22

clear much of the structure of the actual forecast errors is captured by the leading 30 EOFs, even 737 

though they only capture ~40% of the total variance (cf., Fig. 5c). 738 

 739 

c. Forecast error variance as a predictor of forecast skill 740 

 741 

In operational ensemble numerical weather prediction systems, the spread of the ensemble about 742 

the ensemble mean is used as a surrogate for the forecast error variance (Epstein, 1969; Leith, 743 

1974) and can be of considerable utility because, under some circumstances, it can be used as a 744 

predictor of the skill of the ensemble mean (e.g., Barker, 1991; Molteni et al., 1996). 745 

Specifically, if the ensemble spread is small (large), this can be an a priori indicator of a skillful 746 

(unskillful) forecast. However, identification of robust forecast spread-skill relationships (so-747 

called “reliability”) has generally proved elusive because such a relationship can depend on 748 

many factors. For a perfect forecast model, statistical considerations indicate that ensemble 749 

spread is only a good predictor of skill in cases where day-to-day variations in the spread are 750 

significant compared to the climatological variance (Houtekamer, 1993; Whitaker and Loughe, 751 

1998). However, even in this case, the maximum correlation between the spread and skill that 752 

one can expect is ~0.8. Conversely, when the day-to-day variations in ensemble spread are small 753 

compared to climatology, there is generally a very low correlation between spread and skill. The 754 

correlation between ensemble spread and forecast skill also depends on the choice of metrics 755 

used (Hopson, 2014). Furthermore, imperfections in the forecast model compound the problem, 756 

and it is generally necessary to “calibrate” the ensemble in some way to account for the influence 757 

of model error. A review of the extensive literature on ensemble numerical weather prediction 758 

reveals a range of experiences regarding the relationship between spread and skill (see Grimit 759 

and Mass, 2007, for a review).  760 

 761 

As noted in sections 2b and 2c, for the experimental set-up considered here, �" represents the 762 

mean of an infinite ensemble of forecasts (i.e., the expected value of �). Thus, it is of interest to 763 

explore the extent to which the forecast error variance given by the diagonal elements of 764 �G#��
G�
 (aka the “spread”) can be used as a predictor of the skill of �". Figures 7i-l show the 765 

total expected error variance (i.e., spread) in 12-day forecasts initialized from the strong 766 

constraint 4D-Var analyses of cycles 21-30, based on the leading 30 EOFs of the forecast error 767 

covariance matrix. A comparison with Figs. 7a-d indicates that, by-and-large, regions of high 768 

spread generally correspond to areas where the forecast errors are largest. While the agreement is 769 

not perfect, it is encouraging. Further investigation is warranted to more formally quantify the 770 

relationship between forecast skill and expected forecast error variance for the circulation 771 

environment considered here. This will be the subject of a future study. 772 

 773 

6. Non-Normal and Modal Error Growth 774 

a. Hessian singular vectors 775 

Following Ehrendorfer and Tribbia (1997), the EOFs of the forecast error covariance matrix 776 G#��
G�  are, in fact, the left singular vectors of the matrix ���
 = G?@�0, �
 �0
� T⁄ , where 777 

recall that ?@�0, �
 is the propagator of the tangent linear model linearized about the forecast �" 778 

(see Fig. 1). Singular value decomposition of � yields: 779 
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 780 

       ���& = �&� T⁄ ���       (16) 781 

       ���� = �&� T⁄ �& 782 

 783 

where �& represent the EOFs, and ���  are the right singular vectors. Introducing the scaled 784 

singular vector �& =  �0
� T⁄ ��� , the associated eigenvalue problem for �& becomes 785 ?@���, 0
G�G?@�0, �
�& = �& �0
���& subject to the orthonormality condition �&� �0
���. =786 $&,., where $&,. is the Kronecker delta-function. The vectors �& are referred to as the Hessian 787 

singular vectors (Barkmeijer et al., 1998), so-called because  �−�
�� is the Hessian of the 4D-788 

Var cost function. For convenience, the name is carried over here to  �� at other times during 789 

the analysis window. From the orthonormality condition, the Hessian singular vectors �&  define a 790 

unit hyper-sphere at the forecast start time � = 0. However, during the forecast interval, the 791 

Hessian singular vectors evolve into the EOFs according to �& = �&�� T⁄ G?@�0, �
�&, and the unit 792 

hyper-sphere evolves into the hyper-ellipsoid described by the forecast error covariance 793 

discussed in section 4. 794 

 795 

 796 
Figure 7: The rms error in (a) SSH (m), (b) SST (℃), (c) surface u (ms-1) and (d) surface v (ms-1) relative to the 4D-797 
Var analysis valid on the same day for 12-day forecasts and averaged over cycles 21-30. The rms errors for the 798 
corresponding fields that are explained by the leading 30 EOFs, �&, of the forecast error covariance matrix are 799 
shown in (e)-(h). Panels (i)-(l) show the expected standard deviation J of the forecast error for the 12-day forecasts 800 
averaged over the same cycles based on the leading 30 EOFs, �&, of the forecast error covariance matrix. 801 
 802 
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Therefore, associated with each EOF �&, there is a unique Hessian singular vector that, over the 803 

forecast interval, evolves into the EOF. SMA demonstrated that for EOFs like those shown in 804 

Fig. 6, the evolution of the Hessian singular vectors proceeds via an upscale transfer of energy, 805 

which means that the forecast errors move to larger scales over time. To illustrate, Fig. 8 shows 806 

the SST structure of the leading Hessian singular vector and associated EOF for a representative 807 

cycle, and clearly displays the upscale transfer of energy in the forecast error. SMA also 808 

demonstrated that Hessian singular vectors, like that in Fig. 8a, typically grow more rapidly than 809 

the most unstable eigenmodes of ?@�0, �
, explored in section 6b, indicating that the upscale 810 

transfer of energy is linked to the interference of the non-normal eigenmodes of the underlying 811 

time-evolving circulation which plays an essential role in forecast error growth. 812 

 813 

 814 
Figure 8: SST for (a) the leading Hessian singular vector and (b) corresponding EOF for a 12-day forecast 815 
initialized from the cycle 24 strong constraint 4D-Var analysis. The Hessian singular vector was computed using the 816 
method of SMA. Also shown is the 9ºC isotherm forecast as an indicator of the position of the temperature front 817 
(black line). 818 
 819 

b. Finite-time normal modes 820 

 821 

The fastest-growing eigenmodes of ?@�0, �
 play an essential role in error growth as the forecast 822 

lead time increases. The eigenvectors of ?@�0, �
 in (10) are often referred to as Finite-Time 823 

Normal Modes (FTNMs). If we denote by ��& , �&
 the complex eigenpairs of ?@�0, �
, then |�&|T 824 

is the factor by which any measure of the amplitude of FTNM �& changes over the time interval 825 �0, ��. Figure 9a shows |��|T for the leading FTNM �� as a function of forecast lead time for two 826 

cycles that reflect the different behavior of the total variance: cycle 9 where total variance first 827 

decreases and later increases, and cycle 23 where total variance continually decreases with 828 

increasing lead time (cf., Figs. 3b and 3c). Error growth is possible in both cases since |��|T > 1 829 

in Fig. 9a. For cycle 9, the growth factor |��|T generally increases with lead time, while for cycle 830 

23 |��|T changes very little with lead time. For an unstable circulation, we would usually expect 831 |��|T to increase steadily with forecast lead time, and for the autonomous case |��|T would 832 

increase exponentially with �. Therefore, a more useful measure of FTNM growth is |��|T �⁄ , an 833 

indicator of the average growth rate. Figure 9b shows |��|T �⁄  versus lead time � for the same two 834 

forecast cycles. During forecast cycle 9, the average growth rate of �� decreases during the first 835 

10 days, remains low until around � =20 days, and increases again for longer lead times. This 836 

behavior is similar to that of the forecast error variance in Figs. 3b and 3c during the same cycle. 837 

Similarly, the average growth rate of �� for forecast cycle 23 decreases with lead time �, 838 

mirroring the behavior of the forecast error variance during this cycle in Figs. 3b and 3c.  839 
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 840 

 841 
Figure 9: (a) The growth factor |��|Tof the leading FTNM versus forecast lead time � for forecast cycles 9 (red) and 842 
23 (black). (b) The average growth rate |��|T �⁄  of the leading FTNM versus forecast lead time � for forecast cycles 843 
9 (red) and 23 (black). (c) The SST structure of the real component of FTNM �� for a 30-day forecast of cycle 9. (d) 844 
The SST of the leading EOF �� for a 30-day forecast of cycle 9. The SST of (e) FTNM ��, which is purely real and 845 
(f) EOF �T for a 30-day forecast of cycle 9. The FTNM and EOF amplitudes differ because they are normalized 846 
differently. The 9ºC isotherm forecast is also shown as an indicator of the position of the temperature front (black 847 
line). 848 
 849 
The structure of the EOFs for long forecast leads times is also controlled by the most unstable 850 

FTNMs. To illustrate this, suppose for a moment that forecast error C is due solely to the leading 851 

unstable FTNM. In general, the eigenvectors of ?@�0, �
 will form complex conjugate pairs. If 852 

the leading eigenmode is complex, it must be combined with its complex conjugate to 853 

yield a real perturbation, in which case C��
 = ���
�� + �∗��
��∗  in this example, where ���
 is 854 

the complex amplitude. If we assume that the real and imaginary components of ���
 are 855 

Gaussian random variables with zero mean and variance JT, then the forecast error covariance is 856 

given by EFC��
C���
H = 4JT��f���
�f���
� + �����
�����
�
. This will be, at most, a rank 857 

2 matrix, and the two EOFs will be given by linear combinations of the real and imaginary 858 

components of ��. In the general case, several of the leading FTNMs will contribute to C, and the 859 

EOFs will reflect the structure of several modes. To illustrate, Figs. 9c and 9d show the SST 860 

structure of the real component of FTNM �� and EOF ��, respectively for the 30-day forecast 861 

initialized from the 4D-Var analysis of cycle 10. In this case, there are several growing FTNMs 862 

with similar growth factors (|�|T is 40, 31, 12, and 6 for the leading four FTNMs), and the EOF 863 

is clearly controlled by �� in this case. Figures 9e and 9f, on the other hand, show the SST of ��, 864 

and EOF �T, which are very similar. For shorter forecast lead times, the link between the leading 865 

EOF structures and the most unstable FTNMs is less pronounced (not shown). 866 

 867 

The emergence of coherent and persistent error structures associated with the most unstable 868 

FTNMs is also reflected in the properties of the auto-covariance matrix of the forecast errors 869 G#��, �′
G� = EFGC��
C���′
G�H. Using again Jacobi’s formula, the cyclic properties of the 870 

trace, and (14) it follows that � �ln ��f�<#��, �′
=�� ��⁄ = � �ln ��f�<#��
#��′
=� T⁄ �� ��y  where 871 
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#��
 and #��′
 are the zero-lag forecast error covariance matrices at time � and �′ respectively. 872 

Figure 4 includes time series of � �ln ��f�<#�30, �′
=�� ��⁄  versus �′ for 30-day forecasts during 873 

cycles 2 and 26. While the volume of the hyper-ellipsoid �f��G#�30, �′
G�
� T⁄  behaves 874 

qualitatively like that associated with #��
 = #��, �
 in Fig. 3a (not shown), Fig. 4 reveals that 875 

the rate of change of volume increases as the covariance lag �� − �′
 decreases. Therefore, the 876 

coherence between the spatial structures of the forecast errors C��
 at different lead times is 877 

increasing, which is consistent with the emergence of the most unstable FTNMs. 878 

 879 

c. Non-linearity 880 

 881 

The dynamics of perturbation growth in shear flows associated with normal modes, and the 882 

interference of modes is a well-understood process (e.g., Pedlosky, 1976; Farrell and Ioannou, 883 

1996), and perturbations can grow by extracting energy from the underlying time-evolving 884 

circulation via the familiar processes of baroclinic and barotropic energy conversion. This is an 885 

appropriate and convenient framework for the evolution of forecast errors considered here since, 886 

recall, we are using energy as the common currency for the various components of the state-887 

vector to compute the error covariance matrix. In general, the same processes that control the 888 

formation of the eddies and meanders in Model T are also responsible for the growth of forecast 889 

errors in Model F. 890 

 891 

 892 
Figure 10: (a) The mean local Rossby number � |V|⁄������� at the surface computed from daily averaged forecasts versus 893 
forecast lead time for each analysis-forecast cycle. (b) The root-mean-square local Rossby number for 12-day 894 
forecasts averaged over cycles 21-30. 895 

 896 
With this in mind, the evolution and properties of the forecast errors will depend on the degree of 897 

non-linearity of the underlying reference forecast �" (cf., Fig. 1) since the processes involved act 898 

as the source of energy in the tangent linear model. As a measure of the importance of non-899 

linearity, Fig. 10a shows the mean local Rossby number, denoted � |V|⁄�������, averaged over a 400 km 900 

wide zonal strip centered in the middle of the model domain (i.e., where the circulation 901 

variability is most energetic – see Fig. 2), and computed from the daily averaged surface flow. 902 

Figure 10a indicates that non-linearity has the greatest influence on the circulation during the 903 

first 10-15 analysis-forecast cycles. While � |V|⁄������� reaches modest values ~0.2 during these cycles, 904 

this nonetheless represents a significant departure from the linear quasi-geostrophic regime. 905 

Indeed, maximum instantaneous in situ values of � |V|⁄  can be significantly larger and are O(1) 906 

in some cases (not shown). During this phase of the experiment, Figs. 2a and 2b indicate that the 907 
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growth of a zonal wavenumber-2 instability dominates the Model T circulation. Beyond cycle 908 

15, the mean Rossby number is generally at or below ~0.1 when maximum instantaneous in situ 909 

values of � |V|⁄  are also lower (not shown). For these analysis-forecast cycles, the Model T 910 

circulation is dominated by the evolution of a zonal wavenumber-1 instability (cf., Figs. 2c and 911 

2d). Despite the difference in resolution, Model F mimics the temporal evolution of  � |V|⁄������� for 912 

Model T, although, as expected, the Rossby number is larger in Model T (not shown).  913 

 914 

Figure 10a indicates that the elevated Rossby numbers during the first 10-15 cycles occur at 915 

short forecast lead times, and then taper off, suggesting that there will be significant sources of 916 

perturbation energy (i.e., forecast error variance) during the early phase of these forecasts. The 917 

subsequent increase in total forecast error variance �l�G#��
G�
 (i.e., energy) at longer lead 918 

times during these analysis-forecast cycles, as revealed by Fig. 3b, suggests that the stretching of 919 

the hyper-ellipsoid (and the increase in the associated hyper-ellipsoid volume in a few cases), is 920 

due to the sustained growth of perturbations that are excited early in the forecast period and that 921 

significantly project onto the fastest growing FTNMs, that eventually emerge as coherent 922 

patterns of error. As shown by SMA, some of this growth is likely to be enhanced by non-normal 923 

interference of the modes and an upscale transfer of forecast error variance, as evidenced by the 924 

behavior of the Hessian singular vectors discussed in section 6a. 925 

 926 

Figure 10b shows the spatial variations in the root mean square of � |V|⁄  for 12-day forecasts 927 

initialized from 4D-Var cycles 21-30. The regions of elevated Rossby number in Fig. 10b 928 

correspond closely with the “hot spots” of high expected forecast error shown in Figs. 7i-l. The 929 

resemblance is striking for SSH (Fig. 7i) and SST (Fig. 7j) and confirms the role of non-linearity 930 

in controlling local forecast error growth and forecast skill. 931 

  932 

7. Summary and Conclusions 933 

 934 
This paper focuses on the properties of the expected analysis and forecast error covariance 935 

matrices that result from 4D-Var data assimilation analyses of the mesoscale circulation 936 

environment that develops in the presence of a baroclinically unstable oceanic temperature front. 937 

Given the ubiquitous nature of this process in the ocean, the findings of this work should be 938 

widely applicable. A novel aspect of this study lies in the methodology used. Specifically, the 939 

tangent linearization of the full data assimilation system and its adjoint were used to compute an 940 

explicit operator for the expected error covariance. This has considerable appeal over other 941 

methods, such as ensemble approaches, that are commonly used to estimate analysis and forecast 942 

error covariance matrices, since the covariance operator is free of the limitations associated with 943 

ensemble size, localization methods, etc. The downside of our approach, however, is the 944 

considerable computational expense involved. Nevertheless, the technique can be applied to 945 

modestly-sized data assimilation problems of significant theoretical interest, such as the case 946 

considered here. A significant advantage of our method over that computed from an ensemble is 947 

that, as noted in section 2, equations (7) and (8) provide an explicit operator for the analysis error 948 

covariance matrix (and equation (9) for the forecast error covariance matrix) which can be used 949 

to interrogate intrinsic properties of the system (as here) using established methods and results of 950 

linear algebra. 951 

 952 
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 953 
Figure 11: A schematic summarizing the evolution of the forecast error covariance during the development of the 954 
temperature front adjustment during (a) cycle 6, and (b) cycle 30. For each cycle, a time series of the forecast error 955 
energy is shown (blue line) computed from the 4D-Var analyses on the same forecast day. The red ellipsoids show a 956 
schematic representation of the evolution of the forecast error covariance hyper-ellipsoids through time. The grey 957 
short grey arrows indicate whether the drift velocity is convergent or divergent.  The blue arrow shows the tendency 958 
of the drift of the mean of the pdf, while the green arrow indicates the emergence of the fastest-growing FTNMs that 959 
stretch the hyper-ellipsoid in preferred directions. Also shown in the inset panels is the SST of the true circulation at 960 
initial and final forecast time. During cycle 6, the flow is characterized by a mature zonal wavenumber-2 instability 961 
that undergoes decay during the subsequent 30-day forecast period. Conversely, during cycle 30, a zonal 962 
wavenumber-1 instability develops that forms a sizeable roll-up meander. 963 
 964 

Our general findings are summarized in Fig. 11, which shows a schematic of the behavior of the 965 

forecast error covariance matrix for two representative forecast cycles that depict the two 966 

different scenarios identified. These two scenarios are characterized by the development of 967 

baroclinically unstable waves with a wavelength corresponding to one channel width (zonal 968 

wavenumber-1) and one half-channel width (zonal wavenumber-2). SMA computed the growth 969 

rates of these two waves and found that the zonal wavenumber-2 instability has a faster growth 970 

rate and so it emerges first within the model simulations. 971 

 972 

(i) Scenario 1 973 

 974 

The first scenario corresponds to the period spanned by the first half-a-dozen or so 975 

analysis-forecast cycles. The observed circulation environment is characterized by a fully 976 

developed zonal wavenumber-2 instability that subsequently decays during the time 977 

interval spanned by the ensuing 30-day forecasts. The behavior of the forecast error 978 

covariance during this period is summarized in Fig. 11a using cycle 6 as a representative 979 

example. Figure 11a shows a time series of the forecast error energy for this cycle as a 980 

function of forecast lead time and computed from the difference between the forecast state 981 

and the 4D-Var analysis on the same day. The initial and final time SST for the forecast are 982 

also shown in Fig. 11a and reveal the decay of the zonal wavenumber-2 instability. During 983 

the forecast, the forecast error grows out to a lead time ~20 days, after which time it levels 984 

off. During the error growth phase of this forecast cycle, the volume of the hyper-ellipsoid 985 

associated with the forecast error covariance matrix decreases (cf., Fig. 3a), which is 986 

associated with a convergent drift velocity in the Liouville equation that describes the time 987 

evolution of the forecast error pdf (cf., Fig. 4a for cycle 2 which displays similar behavior 988 

to cycle 6 shown here). At the same time, the total forecast error variance decreases (cf., 989 
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Fig. 3b), and the hyper-ellipsoid stretches along the directions described by the leading 990 

EOFs, as described in section 5a. This initial phase of forecast error growth is illustrated 991 

schematically in Fig. 11a by the red ellipsoids. During the period beyond forecast day 20, 992 

when the forecast error asymptotes to a more constant level, the pdf drift velocity becomes 993 

divergent (cf., Fig. 4a), and the forecast error covariance hyper-ellipsoid begins to expand 994 

(cf., Fig. 3a). At the same time, the total forecast error variance increases (cf., Fig. 3b) and 995 

the hyper-ellipsoid is preferentially stretched along the directions associated with the 996 

fastest-growing FTNMs. This phase of the forecast error development is also illustrated in 997 

Fig. 11a.  998 

 999 

(ii) Scenario 2 1000 

 1001 

The second scenario in the experiments considered here corresponds to the growth and 1002 

development of the zonal wavenumber-1 instability that follows after the decline of zonal 1003 

wavenumber-2. The behavior of the forecast error covariance during this period is 1004 

summarized in Fig. 11b using cycle 30 as a representative example. The forecast error 1005 

energy, in this case, increases during the entire forecast cycle, as shown in Fig. 11b. The 1006 

initial and final time SST for the forecast are also shown in Fig. 11b and reveal the 1007 

emergence of the wavenumber-1 instability. During the entire forecast cycle, in this case, 1008 

the volume of the forecast error covariance hyper-ellipsoid decreases (cf., Fig. 3a) and the 1009 

pdf drift velocity in the Liouville equation remains convergent (cf., Fig. 4b for cycle 26 1010 

which displays similar behavior to cycle 30 shown here). The total forecast error variance 1011 

at first decreases until around forecast day 18, and then slowly increases (cf., Fig. 3b). 1012 

Throughout the forecast, the hyper-ellipsoid stretches along the directions described by the 1013 

leading EOFs as the fastest-growing FTNM begin to emerge, as illustrated schematically in 1014 

Fig. 11b by the red ellipsoids. 1015 

 1016 

The temporal behavior of hyper-ellipsoid volume and total error variance can be further 1017 

appreciated by appealing to a simple example. Consider the 2×2 covariance matrix D with 1018 

eigenvectors �� and �T. The total variance is given by ��� + �T
 and the determinant by ���T. In 1019 

cases where the variations in ��� + �T
 and ���T are positively correlated, there is no significant 1020 

restriction on the relative amplitude of �� and �T. Conversely, during times when ��� + �T
 1021 

increases and ���T decreases, there must be a disparity in the amplitude of the eigenvalues. 1022 

Therefore, considerable stretching of the error ellipse associated with D will occur along one 1023 

axis. The same principle applies in higher dimensions and illustrates the geometric factors that 1024 

control the variations in the topology of the hyper-ellipsoid associated with the variations of the 1025 

determinant and trace of the forecast error covariances in Fig. 3. The close connection between 1026 

the EOFs of forecast error and the FTNMs also suggests a disparity in the spectrum of FTNM 1027 

growth rates, which in turn favors non-normal forecast error growth due to the interference of the 1028 

FTNMs (Farrell and Ioannou, 1996). Indeed, SMA confirmed that non-normal growth occurs in 1029 

this same system, leading to up-scale energy transfer in the forecast errors, as the leading EOFS 1030 

and FTNMs emerge (cf., Fig. 8). Therefore, in general, forecast errors at small scales are liable to 1031 

self-organize into larger-scale coherent structures. 1032 

 1033 

The difference in the temporal evolution of the forecast error energy between the two cases 1034 

considered in Fig. 11 deserves some further comment. The leveling off of the forecast error 1035 
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energy in Fig. 11a may perhaps be associated with non-linear saturation of the forecast error 1036 

amplitude. If that is the case, then the forecast error covariance G#G� during this phase of the 1037 

forecast would be largely time-invariant (i.e., stationary error statistics), in which case the 1038 

determinant and trace would remain constant in time. This is at odds, though with Fig. 3. 1039 

However, equation (13), which describes the time evolution of the forecast error covariance, is 1040 

predicated on the tangent linear assumption. In this case, the behavior of the total forecast error 1041 

variance and hyper-ellipsoid volume beyond forecast day 20 in Fig. 3 could perhaps be a 1042 

symptom of linearization errors. Indeed, the analysis in Fig. 9b does indicate that during the 1043 

period under consideration, the average growth rate of the leading FTNM receives a boost 1044 

around forecast day 20. Equation (14) provides additional evidence in that the eigenspectrum of 1045 

the tangent linear operator s@��
 comprises complex conjugate pairs of eigenvectors and 1046 

eigenvalues. The real part of the eigenvalues represents the instantaneous growth rate of forecast 1047 

errors associated with these eigenvectors. Thus �l<s@= equals twice the sum of the instantaneous 1048 

growth rates of the instantaneous eigenvectors. Therefore, the change in sign of �l<s@= in Fig. 1049 

4a is indicative of a switch from predominantly decaying instantaneous modes of s@ to 1050 

predominantly growing modes. However, for the non-autonomous cases considered here, there is 1051 

no clear relationship between the instantaneous eigenvectors of s@��
 and the FTNMs of 1052 ?@�0, �
.  Furthermore, while Fig. 11a shows what we believe to be the behavior during a 1053 

representative example of scenario 1, other forecast cycles during this period exhibit a decline in 1054 

forecast error energy at a lead time beyond 20-days (not shown), which is inconsistent with non-1055 

linear saturation of error amplitude. Besides, it is by no means clear why the forecast error 1056 

energy during scenario 2 would not saturate over the same forecast lead time, if this is indeed the 1057 

explanation for the behavior during scenario 1. Further analysis of these issues and behaviors is 1058 

clearly warranted. 1059 

 1060 

There are some critical limitations of the present study that should be mentioned here. First, no 1061 

attempt was made to account for model error in calculating the expected analysis and forecast 1062 

error covariances. Model error is an unavoidable facet of all real forecast systems, so including 1063 

its influence in the approach presented here represents an important next step. Indeed, the 1064 

Fokker-Planck equation (12) indicates that the addition of the diffusion term would introduce 1065 

additional and important influences on the forecast error pdf. Nonetheless, Fig. 7 shows that even 1066 

when model errors are not accounted for, the expected forecast error covariances can still 1067 

faithfully describe actual error growth and predictability. Caution should be exercised here since, 1068 

even though the “forecast model” employed in this study is imperfect relative to the observed 1069 

model, the paternal twin approach adopted in our experiments is unlikely to mimic actual model 1070 

errors truly. A second limitation of our study is the absence of surface forcing. As discussed in 1071 

section 2, surface forcing can play an important role in frontogenesis and frontolysis. The 1072 

inclusion of forcing and the attendant uncertainties in our experiments would undoubtedly 1073 

increase the diversity of possible ocean forecast states and enhance the forecast error covariance. 1074 

Finally, while the time scales in Fig. 11 refer to the experiments presented in this paper, the very 1075 

general nature of the dynamical processes at work in the circulation considered here suggest that 1076 

Fig. 11 may apply more broadly across the range of scales that support the formation and decay 1077 

of baroclinically unstable fronts. While we can offer no specific guidance on how our findings 1078 

may apply more generally across different space- and time-scales (i.e., mesoscale or sub-1079 
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mesoscale), scaling analysis may shed some light on this, and would be a fascinating topic for 1080 

further research. 1081 

 1082 

As noted earlier, our approach is computationally demanding. The computational burden 1083 

required for each calculation depends on the computational resources available, so it is perhaps 1084 

useful to report the computation time required in terms of the time taken to run a single outer-1085 

loop 4D-Var iteration on the computer system available. With this in mind, let �� represent the 1086 

CPU time required to perform a single outer-loop of 4D-Var. The expected analysis error 1087 

covariance matrix  ' given by (7) involves evaluations of the tangent linearization of the 4D-1088 

Var algorithm, 85 86⁄ , and its adjoint �85 86⁄  
�, for each outer-loop. The CPU requirements 1089 

of each integration of 85 86⁄  and �85 86⁄  
� is ~��. Therefore, for an arbitrary vector �, a 1090 

single matrix-vector product  '� requires a CPU time ~<2� + ∑ �'.(� =�� where � is the number 1091 

of outer-loops. The cost of a matrix-vector product of #'��
� based on (10) is comparable, since 1092 

the additional integrations of the tangent linear and adjoint models does not add significantly to 1093 

the computational cost. For the case � = 1 in all of the examples considered here, a single 1094 

matrix-vector product  � or #��
� is ~3 times the cost of a single 4D-Var calculation. The trace 1095 

and determinant calculations of section 4 using the Bai et al. (1996) approach described in 1096 

appendix C are the most-costly calculations presented in this study. Each data point in Fig. 4a is 1097 

based on a Monte Carlo of 900 separate evaluations of  � or #��
� which requires ~2700��, 1098 

although the same Monte Carlo calculation can be used to estimate the trace associated with any 1099 V� 
 and V<#��
=. Such calculations would clearly be prohibitive for problems with a dimension 1100 

much larger than considered here which is  �10N
. Conversely, the trace estimate calculations 1101 

using the approach of Fisher and Courtier (1995) in appendix C are based on 30 separate 1102 

evaluations of  � or #��
� which require ~90�� so are much more tractable, even for larger 1103 

problems. The CPU time required to compute the EOF calculations of section 5 depends on the 1104 

number of leading members of the eigenspectrum are desired. As a rule of thumb, computation 1105 

of reliable estimates of the N leading EOFs require ~2N evaluations of  � or #��
� and ~6q��. 1106 

 1107 

This study represents an intersection between a state-of-the-art ocean analysis-forecast system 1108 

and the abstract ideas about forecast error development exposed by linear algebra. While our 1109 

approach is very computationally demanding, computer power continues to increase. Thus, it is 1110 

conceivable that such calculations could be performed on larger, more realistic systems in the 1111 

near future. Indeed, when the ROMS tangent linear and adjoint models were first developed 1112 

almost two decades ago (Moore et al. 2004), some of the calculations presented here would not 1113 

have been possible with the computing facilities available to us at that time. There is potentially 1114 

a wealth of additional information and a deeper understanding of ocean forecast system behavior 1115 

that could be mined using the approaches described here. Therefore, we should not feel 1116 

intimidated by the dimension of the everyday forecast problems at hand. 1117 
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 1126 

APPENDIX A 1127 

 1128 

Energy scaling for the error covariance 1129 
 1130 

If we denote by C the vector of grid-point values of errors in free surface elevation, L¢ , the 1131 

horizontal components of velocity, L£ and L¤, and temperature, L� , then following Smith et al. 1132 

(2015) G is defined such that  ℰ = C�G�GC is the total perturbation energy of the errors given 1133 

by: 1134 

 1135 ℰ = ¦§¨T ∑ <L¢=&.T �©&. +&. §T̈ ∑ ª�L£
&.«T + �L¤
&.«T ¬ℎ&.«�©&. + §T̈&.« �®¦z¨�T ∑ �L�
&.T ℎ&.«�©&.&.«  (A1). 1136 

 1137 

where, � is the acceleration due to gravity, ¯3 = 1025 kg m-3 is the mean ocean density, U =1138 1.6 × 10�° K-1 is the thermal expansion coefficient of sea water, and q3 = 3.2 × 10��s is a 1139 

representative value of the Brunt-Väisälä frequency. The summations are performed over all 1140 

ROMS grid cells in the horizontal ���
 and in the vertical �K
 where �©&. is the horizontal grid 1141 

cell area and ℎ&.« is the grid cell thickness. The first term in (A1) represents the perturbation 1142 

potential energy associated with errors in surface elevation, the second term is the perturbation 1143 

kinetic energy due to errors in the horizontal velocity, and the last term is the available 1144 

perturbation potential energy associated with errors in the density. Recall that only temperature is 1145 

included in the ROMS configuration used here, and for convenience we use have assumed a 1146 

linear equation of state for the density errors L§ = −¯3UL�. In addition, since the grid used here 1147 

has uniform grid-spacing �©, the error norm used in all calculations was actually ℰ �©⁄ , the 1148 

energy per unit area. Therefore, G is a diagonal matrix with elements given by ��¯3 2⁄ 
� T⁄ , 1149 <�¯3ℎ&.« 2⁄ =� T⁄
, and <¯3ℎ&.« 2⁄ =� T⁄ �U� q3⁄ 
 as appropriate. 1150 

 1151 

APPENDIX B 1152 

 1153 

Covariance from perturbed 4D-Var analyses 1154 

 1155 
As described by Gürol et al. (2014), the inverse preconditioned stabilized representer matrix 1156 �������� + !
�� in (2) is factorized in the ROMS dual 4D-Var system using the Lanczos 1157 

formulation of the B-restricted preconditioned conjugate gradient method of Gratton and 1158 

Tshimanga (2009) according to: 1159 

 1160 

     �������� + !
�� ≈ ±²³²��±²� ����   (B1) 1161 

 1162 

where ±² is the matrix of Lanczos vectors o& arising from m inner-loops, and ³² =1163 ±²� ������������ + !
±² is a symmetric tridiagonal matrix. Each Lanczos vector 1164 

represents a conjugate gradient descent direction, and the o& are orthonormal according to 1165 ±²� ����±² = !². The Lanczos vectors ±² span a limited subspace of the full control space, 1166 

and as such, the subspace orthogonal to ±² will not be constrained by 4D-Var. 1167 

 1168 
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 1169 
Figure B1: (a) A schematic showing the space spanned by the Lanczos vectors o� and oT in the case of two inner-1170 
loops, and the subspace o´ that is not constrained by 4D-Var. The intersecting red cones (drawn to scale) show the 1171 
standard deviation of the directions in the perturbed Lanczos vectors arising from perturbations in the observations 1172 
and background from distributions q�e, �
 and q�e, �
  respectively. (b) A schematic showing the space spanned 1173 
by the Lanczos vector o� in the case of a single inner-loop. In this case, the space that is not constrained by 4D-Var 1174 
is divided into o´}  and o´~. The Lanczos vector perturbations $o� in this case project onto the subspace o´}but not 1175 o´~ . 1176 

 1177 

As described in section 2b, the expected analysis error covariance matrix can be derived by 1178 

considering an ensemble of 4D-Var analyses, where each ensemble member is computed by 1179 

perturbing the background �� and the observations �	 with perturbations drawn from Gaussian 1180 

distributions q�e, �
 and q�e, �
 respectively. Each set of perturbations leads to perturbations 1181 $±² in the Lanczos vectors. While the perturbed Lanczos vectors will span only a small 1182 

subspace of the full control space, each resulting ±² defined by the ensemble will span a 1183 

different set of subspaces. Therefore, the resulting ensemble of 4D-Var analyses will span a 1184 

larger subspace than any single analysis. This is illustrated schematically in Fig. B1a which 1185 

shows the case for � = 2. Figure B1a shows the directions of the Lanczos vectors o� and oT for 1186 

the original unperturbed 4D-Var analysis. The subspace that is unconstrained by the 2 inner-1187 

loops is denoted as o´. Also shown in Fig. B1a, drawn to scale, is the standard deviation of the 1188 

range of the perturbed Lanczos vectors that result from an infinite ensemble. Clearly, some of the 1189 

perturbed Lanczos vectors will project significantly into o´, thus expanding the subspace 1190 

spanned by 4D-Var. However, there will still be parts of the control space that are unconstrained 1191 

by 4D-Var. For example, consider Fig. B1b, which shows the case of � = 1 for illustrative 1192 

purposes. In this case, the subspace unconstrained by 4D-Var has been divided into two denoted 1193 o´}  and o´~ . As shown in Fig. B1b, the perturbed Lanczos vectors provide information about 1194 o´} , while o´~remains unconstrained. 1195 

  1196 
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APPENDIX C 1197 

 1198 

 1199 

Iterative methods for estimating the determinant and trace of a matrix 1200 

 1201 
For the large dimension problem considered here (~105), it is not practical to explicitly compute 1202 

the analysis and forecast error covariance matrices. Therefore, properties such as the 1203 

determinant, trace, and eigenspectrum must be calculated using iterative approaches. Two 1204 

approaches have been employed in this study. The first is based on Bai et al. (1996; hereafter, 1205 

BFG) and is used to estimate the determinant and trace of a matrix. Since it is based on the 1206 

Lanczos algorithm, it can also be used to reliably compute the leading members of the 1207 

eigenspectrum. The second approach is based on Fisher and Courtier (1995; hereafter, FC). 1208 

While this latter approach is more straightforward to implement than BFG, it only yields an 1209 

estimate of the matrix trace. A comparison of the trace estimates obtained from the two 1210 

independent approaches provides a check on the efficacy of the results. 1211 

 1212 

a The BFG approach 1213 

 1214 

The diagonal elements of the real square matrix D can be expressed as the inner-product µ&& =1215 ¶&�D¶& where ¶& is ith column of the identity matrix. Furthermore, if V�D
 = V��
 is a smooth 1216 

function of the eigenspectrum � of D, then ¶&�V��
¶& yields the ith diagonal element of the 1217 

associated matrix. In BFG, the trace of V�D
 = V��
 is replaced by an integral, which can then 1218 

be estimated using different Gauss-quadrature rules. Specifically, BFG have developed a Monte 1219 

Carlo approach to estimate lower and upper bounds on the inner-product � = ��V�D
�. Then, if 1220 V��
 = �, the inner-product � will yield upper and lower bounds on �l�D
. Similarly, V��
 =1221 ��� can provide bounds on �l�D��
, and V��
 = ln � will yield bounds on �l�ln D
 =1222 ln<�f��D
=. An ensemble of estimates of �. are computed by using different vectors for �. with 1223 

elements of either +1 or -1 that are chosen at random with equal probability (i.e. “Algorithm 2” 1224 

of BFG). For each choice of random vector �., the Lanczos algorithm (Golub and van Loan, 1225 

1989) is used to estimate the eigenvalues �&. Note, that this application of the Lanczos algorithm 1226 

is distinct and separate from that used in the 4D-Var algorithm described in appendix B. All that 1227 

is required is a routine that evaluates the matrix-vector product D�.. The inner-product estimate 1228 

resulting from Gauss-quadrature is then given by �. = ∑ ·«T�«p«(�  where the weights ·«T are 1229 

derived from the Lanczos algorithm itself. By applying different rules to the resulting Gauss-1230 

quadrature of the function V��
, estimates on the upper < .̧= and lower <Z.= bounds for each �. 1231 

can be computed. Using a Monte Carlo sample of size w, the upper and lower bounds of V��
 1232 

can be calculated as 1 w ∑ .̧¹.⁄  and 1 w ∑ Z.¹.⁄ , respectively. In the calculations presented in 1233 

section 4, n = 90 and w = 10 (w = 20 for 30-day forecast lead times), and the matrix-vector 1234 

product D�. for each sample member is computed using equation (8) or (10), as appropriate, by 1235 

employing the tangent linear and adjoint of the ROMS 4D-Var system. 1236 

 1237 

b The FC approach 1238 

 1239 

The method employed by FC is also based on a Monte Carlo approach to estimate �l�D
. In this 1240 

case, �l�D
 ≈ 1 x⁄ ∑ �.�D�.º.  where x is the sample size, and the elements of � are normally 1241 
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distributed as q�0,1
. While the practical implementation of this approach is more 1242 

straightforward than that of BFG, it is limited to estimates of �l�D
. The expected percentage 1243 

error in the trace estimate is given by 100 �2x
� T⁄⁄ . In the calculations of section 4, a sample 1244 

size x = 30 was used, which yields an expected error a little shy of 13%. To reduce the error to, 1245 

say, 1% would require a sample size of 5000, which is impractical. 1246 

 1247 

 1248 
Figure C1: A scatter plot of BFG estimates (abscissa) versus FC estimates (ordinate) of log�3<�l�G G�
= for the 1249 
analysis error covariance matrices using (8) and (9), and log�3<�l�G#��
G�
= for the forecast error covariance 1250 
matrices using (10) at various lead times, �. The upper and lower bounds for the BFG estimates and uncertainties for 1251 
the FC estimates are indicated for each point. The points in red are for a 30-day lead time. For reference, the 1:1 line 1252 
is also shown (black dashed line). 1253 
 1254 

A comparison of the BFG and FC estimates of �l�G G�
 for the expected analysis error 1255 

covariance matrices  �−�
  (equation (8)) and   �0
 (equation (9)), and for the expected 1256 

forecast error covariance matrices �l�G#��
G�
 (equation 10) at various lead times � are shown 1257 

in Fig. C1. In all cases, G defines the energy norm (see appendix A). For � < 30, the two 1258 

methods yield consistent estimates that fall close to the 1:1 line. For � = 30, the FC estimates are 1259 

higher than those of BFG. Despite the disagreement for these longer lead forecasts, Figs. 3b and 1260 

3c show that on the whole, the time evolution of the trace estimates yielded by the two 1261 

approaches is consistent. Therefore, we feel confident that the BFG determinant estimates in Fig. 1262 

3a are reliable and that the evolution in time is robust. 1263 

 1264 

  1265 
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